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ABSTRACT

MODELING STABILITY OF MAGNETARS AND
ACCOMPANYING INTERNAL MAGNETIC FIELDS WITH

APPLICATIONS TO CONTINUOUS GRAVITATIONAL WAVE DETECTION

By

Samuel George Frederick II

Possessing the strongest magnetic fields in the Universe, a group of rapidly rotating pulsars known

as magnetars mark an extremum of our understanding of physical phenomena. The strength of

their magnetic fields is sufficient to deform the shape of the stellar surface, and when the rotational

and magnetic axes are not aligned, these deformations lead to the production of gravitational waves

(GWs) via a time-varying quadrupole moment. Such gravitational radiation would differ from

signals presently detectable by the Laser Interferometer Gravitational-Wave Observatory (LIGO),

as these signals would be continuous rather than the momentary “chirp” waveforms of past LIGO

inspiral binary merger detections. Here, we construct a computational model for magnetar stellar

structure with strong internal magnetic fields. We implement an n = 1 polytropic equation of state

(EOS) and adopt an existing mixed poloidal and toroidal magnetic field model constrained by the

choice of EOS [1]. We utilize fiducial values for magnetar magnetic field strength and various

stellar physical attributes. Via computational simulation, we measure the deformation of magnetar

stellar structure to determine upper bounds on the strength of continuous gravitational waves as a

result of these deformations inducing non-axisymmetric rotation. We then compute upper limits

for gravitational wave strain predictions for sources in the McGill Magnetar Catalog, a index of

all detected magnetars [2]. This work seeks to inform the sensitivity of future iterations of GW

detectors such as Advanced LIGO, and the proposed Einstein Telescope and Laser Interferometer

Space Antenna (LISA) to continuous GW signals resulting from magnetars. Detection of these

signals would provide key insight into the extreme structure of these stars, and potentially inform

our understanding of the highly-dense physical environment of the Universe shortly following the

Big Bang.
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CHAPTER 1

ASTROPHYSICS BACKGROUND

Magnetars belong to a group of stellar objects known as pulsars. The stellar structure of pulsars is

highly compact and dense, leading to a composition almost entirely of neutrons, fittingly referred to

as neutron stars. Together, these stellar objects form a group characterized by remarkable physical

attributes including the strongest magnetic fields in the universe, rapid rotation accelerating stellar

structure in the relativistic regime, and immense internal densities and pressures which lead to

phenomena such as superfluidity of nucleons. Here, we provide explanation of the principle

physics underlying this group of stellar objects including their classification, structural regions,

magnetic field structure, and further key attributes.

1.1 Properties of Neutron Stars

1.1.1 Description and History

The extreme physical environments modeled in this thesis simulate the structure of neutron stars.

These stars form the central physical structure of pulsars and magnetars, making them a logical

starting point in our discussion of such stellar objects. The dramatic nature of neutron stars,

characterized by densities as high as 1015 g·cm−3 and pressures exceeding 1036 dyn·cm−2, offers a

key opportunity for rigorously investigating physical theories under superlative circumstances [3].

By the mid-1960s, considerable progress was made in describing the theoretical structure of

neutron stars; however, direct detection remained unresolved. Numerous hypotheses were posed

suggesting potential means of observation, often based on established theory regarding the thermal

radiation of neutron stars. Given an approximate surface temperature of ∼ 106 K, neutron stars

emit blackbody radiation which peaks in the X-ray regime. Among the earliest attempts at X-ray

astronomy, initial experimental efforts to detect neutron stars were inconclusive [3]. The discovery

and verification of these stars would not come from outright detection of their thermal properties,

1



but rather from the detection of periodic radio pulses corresponding to the emission and rapid

rotation of a pulsar.

Figure 1.1: Jocelyn Bell

Burnell circa 1976 [4].

In August of 1967, Jocelyn Bell Burnell, a graduate student su-

pervised by Anthony Hewish, detected a curious signal she described

as a “bit of scruff” from a radio antenna array intended for studying

scintillation of radio sources due to interaction with solar wind [5].

Further detection under higher resolution determined that the signal

was periodic and highly stable. Although initial theories to explain

the periodicity attributed the signal to the oscillation of white dwarfs

or neutron stars, Gold (1968) posited an alternative theory that such a

signal may result from the rapid rotation of a magnetized neutron star

[3]. Later that year, successful detection of the pulsar associated with the Crab Nebula determined

the star’s rotational period to be 0.0333 s. This discovery signaled the end to debate over models

attributing the source to white dwarf oscillations; these stars are a few orders of magnitude larger

than neutron stars and possess lower densities. Given the physical attributes of white dwarfs, these

stars can not sustain such high rotational periods without disintegrating. Ultimately, Gold’s theory

of rapidly rotating, magnetized neutron stars emerged consistent with observation and theoretical

constraints.

1.1.2 Formation

Neutron stars form during supernovae. Near the end of the stellar life of a massive (& 8 M�) giant

or supergiant progenitor star, the fusion process ceases for lighter elements such as hydrogen and

helium, transitioning to the fusion of heavier elements including carbon and oxygen supported by

high temperatures near the core. This process results in the generation of even heavier elements

including silicon, whereby elements form layered regions with heavier material closer to the core.

Fusion continues for heavier elements such as silicon; however, this process can not continue

forever, as the difference in binding energy between successive nuclei decreases to a critical

2



point. As silicon fuses into iron, more energy is required for fusion to occur than is released.

An endothermic process known as photodisintegration occurs, annihilating heavier nuclei and

removing an immense amount of thermal energy from regions near the core. Simultaneously,

free electrons which previously supported the star via degeneracy pressure undergo rapid electron

capture,

p+ + e− → n + νe , (1.1)

with protons freed by photodisintegration. The sudden disintegration of the stellar core and removal

of electron degeneracy pressure leaves the star with no way of maintaining hydrostatic equilibrium,

causing the core to undergo gravitational collapse, resulting in a cascading implosion of upper stellar

regions [5]. This process, known as core-collapse, continues until neutron degeneracy pressure

balances the gravitational force [3]. For Type II supernovae categorized by the composition of

material surrounding the core, rebounding matter is sent out in highly energetic shocks, leaving

behind a remnant core; a neutron star [5]. The dramatic formation of these stars results in the

sudden emission of many neutrinos and are thought to produce gravitational waves (GWs). The

GWs produced by supernovae are further discussed in §2.1, although they are not the source of

GW emission investigated in this thesis.

1.1.3 Structural Regions

Neutron stars possess densities and pressures far exceeding most stellar environments. Considering

the volume of the star to be roughly fixed, high particle densities in the stellar interior must lead

to high occupation numbers, or the mean number of particles crowding a particular state. Under

such circumstances, the number of available states is no longer overwhelmingly larger than the

number of particles, and the mathematical structure of Maxwell-Boltzmann statistics breaks down.

Consequently, neutron star models must consider the role of quantum statistics and relativistic

particles in determining stellar pressure and mass density [6]. Subsequent discussion relates these

variables via an equation of state (EOS), a requirement for constructing neutron star models in
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Figure 1.2: Schematic of neutron star structural regions [3]. In §1.1.3, the “outer envelope” is referred to as
the outer crust. The density ρ0 is referred to as the normal nuclear density, ∼ 2.8 × 1014 g·cm−3, the mass
density of nucelon matter.

order to describe the numerous formational zones of such stars. For now, we limit our discussion

to describing these structural regions within neutron stars.

The outer crust possesses densities ranging from a few g·cm−3 up to ρ ∼ 4 × 1011 g·cm−3.

Strong electron degeneracy provides much of the pressure in this region, and for densities exceeding

ρ ∼ 106 g·cm−3, electrons become relativistic. These energetic electrons allow for the conversion

of protons to neutrons in crustal iron nuclei via the process of electron capture (1.1). This process

results in neutron-rich nuclei, and we may expect the standard process of β-decay,

n→ p+ + e− + ν̄e , (1.2)

to revert neutrons to protons within such nuclei. However, due to near complete electron degeneracy

resulting in electrons crowding the ground state, emitted electrons via the β-decay process would

have no vacant state to occupy, and thus impede decay. This results in the neutronization of nuclei,

producing a sequence of increasingly neutron-rich elements [5].

The inner crust begins at densities of approximately ρ ∼ 4 × 1011 g·cm−3 and extends up to

ρ ∼ 2 × 1012 g·cm−3. Sufficiently high densities result in a minimum energy configuration for

neutrons which is located outside the nucleus. This phenomenon is known as neutron drip, whereby
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free neutrons emerge. A curious feature of this process is the spontaneous pairing of degenerate

neutrons, which was first theorized for electrons in 1957 by Bardeen, Cooper, and Schrieffer (BCS)

and subsequently extended to nucleons by Bohr et al. (1958). BCS theory results in the pairing

of electrons via a weak attraction due to the electron-phonon interaction [3]. These fermion pairs

are referred to as Cooper pairs. Each pairing forms a boson which is free from the restrictions of

the Pauli exclusion principle, allowing every neutron pair to assume the lowest energy state. This

process forms a superfluid with no resistance [5].

The outer core is characterized by densities ranging from ρ ∼ 2 × 1012 g·cm−3 up to ρ ∼

4 × 1014 g·cm−3. For densities near ρ ∼ 4 × 1012 g·cm−3, neutron degeneracy pressure overtakes

electron degeneracy pressure. As a result, nuclei dissolve and structure in this region takes the form

of a fluid of free protons, neutrons, and electrons. The cooper pairing of protons and neutrons with

constituent particles dominates this region. These pairs form superfluids, for which protons form a

superconducting fluid free from ohmic dissipation, or energy lost to resistive heating [5][3].

The inner core and subsequent regions approaching ρ ∼ ρcore are subject to active research,

and several competing hypotheses exist regarding the formation of exotic and sub-nuclear particles

in this region such as the appearance and condensation of hyperons (a class of heavy and unstable

baryonicmatter), pions, and quarkmatter. Since laboratory conditions cannot recreate environments

sufficient to replicate the inner core, the EOS regarding neutron star cores remains unknown, and

thus poses one of the key areas of ongoing research in constructing neutron star models.

1.1.4 Rapid Rotation

In addition to extreme structural properties, neutron stars exhibit rapid rotation. Although progenitor

supergiants responsible for the formation of neutron stars may rotate slowly, the collapse of their

iron-rich core into a newly formed neutron star must be subject to the conservation of angular

momentum. Consequently, even initially slight progenitor core rotation may result in a rapidly

rotating neutron star [5]. We consider a classical example for which a progenitor supergiant possess

a rotating core with angular frequency ωi and where we approximate its moment of inertia by
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treating the core as a sphere such that Ii = 2
5 Mi Ri

2. After core collapse, the neutron star must have

angular frequency ω f . In keeping with our approximation, we assign the neutron star a similar

moment of inertia, I f =
2
5 M f R f

2. Via conservation of angular momentum, we require

Iiωi = I fω f → Mi Ri
2ωi = M f R f

2ω f . (1.3)

Solving for ω f , we find

ω f = ωi

(
Ri
R f

)2
(1.4)

Astrophysicists often reference the rotational period, P, when referring to rapidly rotating neutron

stars. We can express (1.2) in terms of rotational period as

P f = Pi

( R f

Ri

)2
(1.5)

Authors Carrol and Ostile show that for a model involving a progenitor iron core with rotational

period Pcore and resulting neutron star with period Pns, expression (1.3) gives

Pns ≈ 3.8 × 10−6 Pcore [5]. (1.6)

Clearly, we expect newly formed neutron stars to have remarkably short rotational periods.

1.2 Pulsars

1.2.1 The Pulsar Model

Pulsars are rapidly rotating neutron stars possessing strong dipole magnetic fields. Along magnetic

field lines, electrons are accelerated at relativistic velocities, producing synchrotron radiation as the

moving charges trace out helical paths. Near the magnetic axis, emission cones along both poles

emit focused beams of electromagnetic radiation.
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Figure 1.3: Schematic of a conventional pulsar [7].

If the magnetic axis is not aligned with the

rotational axis of the star, the beam sweeps out a

circular path as the star rotates. If there exists a

point in the star’s rotation during which the beam

aligns with the line of sight for an observer on

Earth, the beam, and thus the star, is detected as a

momentary electromagnetic pulse. These pulses

are predominantly received in the radio regime,

broadly ranging in frequency from 20 MHz to 10

GHz [5].

1.2.2 Magnetic Field Amplification

Owing their discovery to electromagnetic radiation induced by the strength of their magnetic fields,

most pulsars possess surface magnetic field strengths on the order of B ∼ 1011–1013 G (gauss);

however, as we discuss in §1.3, exceptional species such as magnetars possess field strengths which

exceed this range [3]. Pulsars are believed to have inherited magnetic field configurations from

their progenitor stellar origin. Under gravitational collapse, these progenitor fields are amplified

as magnetic flux is conserved. To illustrate this phenomena and compare initial and final field

strength, we follow a procedure analogous to that of §1.1.4. Recall that magnetic flux is defined as

Φ =

∫
S
B · dA , (1.7)

where we represent the surface of the progenitor iron core and newly formed neutron star as 4πR2
i

and 4πR2
f , respectively. Furthermore, we consider the magnetic field to be perpendicular to the

surface at each point for initial and final configurations, and that the magnitudes Bi and B f are

constant over respective surfaces. Imposing these restrictions, we equate initial and final flux

configurations as

Bi4πR2
i = B f 4πR2

f . (1.8)
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For a measure of Bi, we adopt constraints imposed by Carrol and Ostlie for a similar calculation

of the relationship between initial and final magnetic field strength for neutron stars[5]. The field

strength of the progenitor iron core can be approximated to an upper limit by the strongest observed

white dwarf magnetic field, where we express Bi = Bwd ≈ 5 × 108 G. Given that these stars form

from the core of a progenitor star with masses slightly less than what is necessary for gravitational

collapse to overcome electron degeneracy pressure and thus form a neutron star, they represent a

fair approximation for estimating the core radius Ri and magnetic field strength Bi of a progenitor

iron core. For Ri = Rwd , we adopt the value of 7000 km or 7 × 108 cm, and a value of 10 km or

1 × 106 cm is customary for the radius of a neutron star, R f = Rns [8][3]. Via equation (1.8), we

express B f as

B f = Bns ≈ Bwd

(
Rwd
Rns

)2
. (1.9)

Plugging in values for parameters that we have specified, we find

Bns ≈ (4.9 × 105)Bwd , (1.10)

or that

Bns / 2.45 × 1014 G. (1.11)

Because thismodel depends on an upper-limit estimate for themagnetic field strength of a progenitor

iron core, our result somewhat overestimates field strengths typically associated with most neutron

stars. However, expression (1.10) provides telling indication of the field strength amplification

which occurs in the formation of neutron stars.

1.3 Magnetars

Although the magnetic field strengths derived in expression (1.11) are not observed in the

majority of pulsars, such field strengths lie within physically allowed values. Indeed, magnetic field

strengths of magnitude B ∼ 1014–1015 G characterize a group of pulsars known asmagnetars. Our

discussion up to this point has detailed the formation as well as the structural and physical properties

of neutron stars and pulsars, all attributes which magnetars share. Despite strong magnetic fields,
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the EOS for magnetar stellar structure is similar to that for conventional pulsars with weaker field

strengths[9]. Therefore, the internal structure of magnetars is consistent with prior discussion of

neutron star structure.

The strength of such magnetic fields does however have an appreciable effect on the rotational

period (P) of magnetars. Magnetic dipole radiation induces a braking torque N acting on rotating

neutron stars, where

N = −
2Ω3B2

effR6

3c3 = I ÛΩ , (1.12)

and Ω is the rotational frequency, I is the stellar moment of inertia, Beff = Beq sin θ where Beq is

the magnitude of the magnetic field at the equator and θ is the angle between the magnetic and spin

axes, and R is the stellar radius [3]. Via equation (1.12), we solve for the magnetic field as

Beff =

(
3Ic3

8π2R6 P ÛP

)1/2

(1.13)

Strong magnetic fields thus increase the rotational period P and the spindown rate ÛP. As a result,

magnetars possess slow rotational periods of 5–8 seconds, a dramatic comparison to some pulsar

periods measured in terms of milliseconds [3].

The strength of these magnetic fields exerts tremendous magnetic pressure on the outer crust

of the star, and the anisotropic distribution of this pressure deforms the star along the magnetic

axis. As previously mentioned, the magnetic axis and rotational axis for pulsars, and consequently

magnetars, are often inclined relative to each other. Therefore, deformations on the surface rotate

non-axisymmetrically. The focus of the next chapter is to discuss this scenario and the resulting

production of gravitational waves.
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CHAPTER 2

GRAVITATIONALWAVES

While the Newtonian theory of gravity requires that a gravitational force propagate instantaneously

throughout the Universe, Albert Einstein’s groundbreaking 1905 discovery of special relativity

laid the groundwork for a gravitational theory consistent with the principles of causality and the

propagation of information at or below the finite speed of light. In 1915, Einstein reconciled

relativity and gravity in a general theory of relativity, the basic principle of which is elegantly

encapsulated in a popular quote by the late American theoretical physicist John A. Wheeler [10]:

Spacetime tells matter how to move
Matter tells spacetime how to curve

Perturbations to spacetime in this general theory of relativity propagate at the speed of light, and

are referred to as gravitational waves (GWs).

2.1 Signal Sources and Production

Presently, GW signals have only been detected from binary black hole and neutron star mergers

[11]. Although these events are dramatic examples of GW production, they potentially constitute

a small fraction of a broader range of sources. GW signals can be divided into three categories:

binary inspiral mergers, bursts from events such as supernovae, and continuous signals resulting

from the rotation of asymmetric sources [12]. The GWs investigated in this thesis are continuous

signals, as they result from the rapid rotation of neutron stars with surface deformations induced

by the strength of the magnetic field. The inclination of the magnetic axis from the rotational axis

allows non-axisymmetric rotation, thus inducing a time-varying gravitational quadrupole.

Gravitational quadrupoles play a similar role in general relativity as dipoles play for electromag-

netism. Analogous to how an oscillating dipole produces electromagnetic radiation, a time-varying

quadrupole generates gravitational radiation. The reason gravitational quadrupoles, and not dipoles

or monopoles, provide the source of gravitational radiation comes from a set of conservation laws.
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Figure 2.1: Quadrupole resulting from the l = m = 2 spherical harmonic.

Again, the analogy of electromagnetism provides a useful heuristic tool. Electromagnetic radiation

has no monopole component as charge is conserved. Analogously, gravitational radiation has no

monopole component because mass is conserved. Furthermore, gravitational dipole radiation is

not observed because of the conservation of angular momentum [13].

Over the next few sections, we overview the mathematics of general relativity underlying the

theory of gravitational waves in order to provide a basis for subsequent discussion. In §2.5, we

show that for gravitational waves, the Einstein field equation can be expressed as a wave equation.

In §2.6, we show that general solutions to this wave equation can take the form of a plane wave,

and that this wave propagates at the speed of light. We culminate our discussion by showing in

§2.6 that these waves can be expressed given two distinct polarization states which arise from the

time-varying quadrupole discussed earier. These polarization states are key to GW detection, and

form a necessary foundation for subsequent discussion of GW signals.

2.2 Linearized Weak-Field Theory

Although GWs result from the dynamics of highly energetic phenomena involving strong fields,

their comparatively weak strength allows us to represent them as a small perturbation to flat

Minkowski spacetime. Symbolically, we express this near Minkowskian metric as

gµν = ηµν + hµν , (2.1)
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where, as convention, ηµν represents the flat Minkowski spacetime metric of special relativity

and hµν represents the perturbation we wish to impose. This expression illustrates that instead

of considering the flat spacetime of the Minkowski metric, we are considering a slightly curved

spacetime gµν. Subsequent discussion allows a reinterpretation of this metric following additional

establishing principles. The notion of applying a small perturbation to flat Minkowski space is

considered a linearized theory of gravity, as we wish to keep only first order terms in hµν, where

|hµν | � 1 [10].

To remain consistentwith a key tenant of general relativity, we require that our nearMinkowskian

metric hold under any number of coordinate systems and transformations. Specifically, our metric

must transform properly under global Lorentz transformations and infinitesimal general coordinate

transformations [14].

We can express a global Lorentz transform from one coordinate system, xµ, to the transformed

coordinate system, xµ
′
, as

xµ → xµ
′
= Λ

µ′

ν xν , (2.2)

where Λ is the Lorentz transformation of special relativity. An important feature of these transfor-

mations is that when acted upon the Minkowski metric, they preserve its invariance,

ηµν = Λ
ρ
µΛ

σ
ν ηρσ , (2.3)

for the dummy variables ρ and σ. We apply the global Lorentz transformation to our metric, gµν,

to show that the transformation of the metric is

g′µν = Λ
ρ
µΛ

σ
ν (ηρσ + hρσ) , (2.4)

and via equation (2.3), we see

g′µν = ηµν + Λ
ρ
µΛ

σ
ν hρσ . (2.5)

This establishes the transformed metric g′µν is of the same form as equation (2.1), and that

h′µν = Λ
ρ
µΛ

σ
ν hρσ . (2.6)
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Thus, we see our metric transforms as

gµν = ηµν + h′µν . (2.7)

Equations (2.6) and (2.7) establish that hµν transforms like the components of a tensor on flat

spacetime. In other words, hµν is a Lorentz tensor. It is worth noting the importance of this

conclusion. Since hµν acts like a tensor in Minkowski spacetime, our conception of gµν itself can

be modified. Rather than considering the metric as representing slightly curved spacetime, we may

refer to hµν as a tensor field defined on flat Minkowski spacetime and thus can be considered a

special relativistic gravitational field [14].

As we wish to keep only the first order terms of hµν, the metric inverse gµν can be expressed as

gµν = ηµν − hµν , (2.8)

where we require gµνgνσ = δ
µ
σ and allow the raising and lowering of indices via the Minkowski

metric ηµν such that the rank-2 and rank-1 contravarient perturbation tensors are

hµν = ηµρηνσhρσ , (2.9)

and

hµν = η
µρhσρ , (2.10)

respectively.

2.3 The Linearized Einstein Equations

So far, we have shown some of the properties of the metric tensor, gµν, how it is preserved

under Lorentz transformations and the resulting interpretation of hµν, and the existence of the

metric inverse. In order to describe how the curvature of spacetime induced by the metric gµν

interacts with matter, we require a set of field equations, similar to the way in which Maxwell’s

equations provide field equations for electromagnetism [14]. The Einstein equations provide a basis

for our analysis,

Rµν −
1
2

Rgµν =
8πG
c4 Tµν , (2.11)
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where Rµν is the Ricci tensor, R is the Ricci scalar, gµν is our familar metric, and Tµν is the

energy-momentum tensor [15]. Although the Einstein equations are non-linear, we seek a lin-

earized approximation of these equations which fits our metric. Following the approach of Cheng,

Maggiore, and Hobson ([10]), we determine the Riemann curvature tensor to linear order

Rαµβν =
1
2
(∂α∂νhµβ + ∂µ∂βhαν − ∂α∂βhµν − ∂µ∂νhαβ) , (2.12)

which in turn determines the Ricci tensor

Rµν = ηαβR(1)
αµβν

=
1
2
(∂α∂νhαµ + ∂µ∂αhαν − �hµν − ∂µ∂νh) . (2.13)

We also find the Ricci scalar to be

R = ∂µ∂νhµν − �h , (2.14)

where � is the D’Alembertian operator as defined on Minkowski space as

� = gµν∂µ∂
µ =

1
c2

∂2

∂t2 −
∂2

∂x2 −
∂2

∂y2 −
∂2

∂z2 , (2.15)

and where we assume the convention (−,+,+,+) for the Minkowski metric signature. Furthermore,

h = hµµ is the trace, or the sum of the diagonal components of the rank-2 tensor [10][15][14]. Our

resulting linearized Einstein equation is

Rµν −
1
2

Rηµν =
8πG
c4 Tµν . (2.16)

2.4 The Infinitesimal Coordinate Change as a Gauge Transformation

Recall our discussion of metric transformations in §2.2. We mentioned that our metric must

transform under global Lorentz transformations and infinitesimal coordinate transformations. The

latter frames the discussion of this subsection, as such coordinate transformations enjoy a gauge

freedom in the context of general relativity. Generally speaking, a gauge freedom allows one to

impose conditions on quantities or fields which do not affect the interpretation of an accompanying

field. By fixing a gauge, we seek to eliminate degeneracy so that our metric, gµν, is uniquely defined
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and is independent of the chosen coordinate system [12]. In the context of electromagnetism, gauge

freedoms allow for changes in the electric potential, V , and the magnetic vector potential, A, as

A′ = A + ∇λ (2.17)

and

V′ = V −
∂λ

∂t
, (2.18)

where ∇λ and ∂λ/∂t represent modifications via a scalar function λ(r, t) which we are free to

impose on A and V ; such modifications affect neither the magnetic field nor the electric field [16].

To determine our gauge transformation, we apply a small shift of the position vector, forming

an infinitesimal general coordinate transformation

x′µ = xµ + ξν , (2.19)

where ξν are four arbitrary functions of the same order of size as hµν. We differentiate equation

(2.19) to obtain the transformation for the contravarient components

∂x′µ

∂xν
= δ

µ
ν + ∂νξ

µ , (2.20)

where δµν is the Kronecker delta. Equation (2.20) also implies the inverse transformation to first

order quantities
∂xµ

∂x′ν
= δ

µ
ν − ∂νξ

µ . (2.21)

Following a similar procedure as undertaken in equation (2.4), we apply these transformations

to the metric tensor:

g′µν =
∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ = (δ

ρ
µ − ∂µξ

ρ)(δσν − ∂νξ
σ)(ηρσ + hρσ) , (2.22)

such that

g′µν = ηµν + hµν − ∂µξν − ∂νξµ , (2.23)
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where we concatenate our equation via the expression ξµ = ηµνξ
ν. From equation (2.23) and

given the invariance of Minkowski space under transformation, we can express transformation of

the metric perturbation as

h′µν = hµν − ∂µξν − ∂νξµ , (2.24)

such that our infinitesimal transformation is consistent with the form of equation (2.7) [3][10].

Recall that our resulting expression for h′µν under Global Lorentz transformations allowed us

to view hµν as a Lorentz tensor acting on Minkowski space. Adopting this interpretation, we

may view equation (2.24) as a gauge transformation, where it is valuable to notice the similarities

between this equation and expressions (2.17) and (2.18) for electromagnetism.

2.5 The Wave Equation

By choice of gauge, we may simplify the process of calculation to obtain a wave equation in the

form of our linearized Einstein equation. This process is analogous to the choice of the Lorenz gauge

in electromagnetism to obtain the inhomogenous wave equation, which allows electrodynamics to

become entirely an issue of solving such equations [16]. In general relativity, the Lorenz gauge

condition is

∂µh̄µν = 0 , (2.25)

where h̄µν is known as the trace-reversed perturbation

h̄µν = hµν −
h
2
ηµν , (2.26)

which helps to simplify our expression.

We can use our chosen gauge to show that ∂µhµν = 1
2∂νh, such that components of the Einstein

field equation (2.11) give the Ricci tensor to be Rµν = −1
2�hµν and the Ricci scalar as R = −1

2�h.

Inserting these relations into our Einstein field equation (2.16), we form the wave equation

�h̄µν =
16πG

c4 Tµν . (2.27)

Therefore, linearized perturbations of Minkowski spacetime adhere to a wave equation, motivating

the distinction of gravitational waves.
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2.6 Plane Waves and Polarization States

For the propagation of gravitational waves in a vacuum, we can represent such waves by the

superposition of plane wave solutions of the form

hµν = εµνeikρxρ , (2.28)

where εµν is the polarization tensor for the gravitational wave. This tensor is composed of constants

forming a symmetric tensor such that εµν = ενµ [10].

In a vacuum, the energy-momentum tensor becomesTµν = 0, such that the wave equation (2.27)

takes the form

�h̄µν = 0 . (2.29)

The trace of h̄ = −h satisfies the same wave equation such that

�hµν = 0 . (2.30)

By substituting equation (2.28) into equation (2.30), we see that

k2εµνeik x = 0 , (2.31)

where kα = (ω/c, ®k) is the four-wavevector such that

k2 = kαkα = −
ω2

c2 +
®k2 = 0 . (2.32)

Because the square of the magnitude of kα is zero, the wavevector is referred to as a null vector.

Recall that a wavepacket must have both a phase velocity and a group velocity, where the packet

propagates at vgroup. We compute both velocities:

vphase =
ω

k
→ −

ω2

c2 +
®k2 = 0→

ω

k
= c , (2.33)

and

vgroup =
∂ω

∂k
→ −

ω2

c2 +
®k2 = 0→ ω = c | ®k | →

∂ω

∂k
= c . (2.34)
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Therefore, gravitational waves must propagate at the speed of light, c. A final condition required

in order to satisfy the Lorenz gauge condition is that

kµεµν = 0 , (2.35)

establishing that the polarization tensor must be transverse [10].

The condition (2.35) allows additional gauge freedom as long as the Lorenz gauge, expression

(2.25), is preserved. We use this gauge freedom to simplify the polarization tensor such that εµν

becomes traceless:

ε
µ
µ = 0 . (2.36)

This traceless condition requires that a gravitational wave and its polarization states act with

shearing forces which do not result in permanent expansions or contractions as the wave propagates

transversely through spacetime [17]. We may further require that

εµ0 = ε0µ = 0 . (2.37)

The choice of these conditions collectively forms what is called the transverse-traceless gauge.

Having set additional conditions on the polarization tensor, we shall now determine its form in

more detail. Consider a wave propagating purely in the z-direction (x3). Given that the wavevector

is null as established in expression (2.32), kα must take the form

kα =
1
c
(ω, 0, 0, ω) . (2.38)

In order for the wavevector to satisfy the transverse condition (2.35), we require

k3ε3ν = 0→ ωε3ν = 0 . (2.39)

Recall that the polarization tensor is symmetric such that

ε3ν = εν3 = 0 . (2.40)

Collectively, these conditions allow only ε11, ε22, ε12, and ε21 to be non-zero components. Provided

the traceless condition (1.36) for the polarization tensor, we require ε11 = −ε22. Furthermore, the

18



symmetric condition for εµν implies that ε12 = ε21. We refer to the magnitude of ε11 and ε22 as

h+ and the magnitude of ε12 and ε21 as h×. Our metric perturbation then has the form

hµν(z, t) =
©­­­«
0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

ª®®®¬ eiω(z−ct)/c . (2.41)

We see there exist two distinct polarization states:

ε
µν
(+)
= h+

©­­­«
0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

ª®®®¬ and ε
µν
(×)
= h×

©­­­«
0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

ª®®®¬ . (2.42)

The magnitude of h+ and h× depend on the axis along which detection is made, making these quan-

tities anisotropic. This is a consequence of the antisotropic nature of the gravitational quadrupole,

whose configuration relative to an observer on Earth determines the strength of the h+ and h×

polarization modes [18].

2.7 Signal Wave Strain and Ellipticity

We require an expression for the gravitational wave amplitude, or the wave strain, which

characterizes the maximum amplitude of either polarization state. The slow rotation of magnetars

allows us to approximate their spinning by rigid body rotation, leading to the expressions

h+ = h0
1 + cos2 (ι)

2
cos (2π fgwt) (2.43a)

h× = h0 cos (ι) sin (2π fgwt) , (2.43b)

where ι is the angle between the line of sight of the observer and the axis of rotation, and fgw = 2/P

is the gravitational wave frequency for P the period of rotation for the star [3][15]. Notice that

if ι = 0 rad, both polarization amplitudes are maximized and h0 represents the sum of the square

of each polarization; therefore, h0 represents the parameter quantifying the wave strain of a GW

signal. For a rigid rotating star, h0 can be expressed in terms of physical constants and variables as

h0 =
4π2G

c4

I0 f 2
gw

r
ε , (2.44)
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Figure 2.2: Three spheroids representing stars of varying ellipticity. From left to right, a prolate spheroid
with ε < 0, a uniform sphere with ε = 0, and an oblate spheroid with ε > 0.

where I0 is the moment of inertia for a spherically symmetric star, and ε is a measure of the stellar

ellipticity, defined as

ε =
Izz − Ixx

I0
. (2.45)

We determine Izz and Ixx from the inertia tensor,

I j k =

∫
V
ρ(r)

(
r2δ j k − x j xk

)
dV . (2.46)

If the stellar ellipticity is negative, meaning Izz < Ixx , the star is considered prolate. Conversely, a

positive stellar ellipticity corresponding to Izz > Ixx means that the star is considered oblate.

From expressions (2.44-2.46), we have shown that measurement of the wave strain, h0, depends

on the degree to which the distribution of mass is spherically non-uniform, i.e, when Izz , Ixx .

In the case of neutron stars and magnetars, this means that knowledge of the time evolution of the

stellar mass density, ρ(r), due to a strong magnetic field informs measurement of Izz and Ixx , and

furthermore, measurement of the ellipticity and ultimately wave strain.

The work of this thesis is to construct a stellar model via structural equations such as ρ(r),

while also assigning a strong internal magnetic field. Evolution of this computational model

provides the necessary means for determining how the magnetic field induces modifications in the

density equation from its initial state. In turn, we determine numerical approximations for Izz and

Ixx throughout the time evolution of our simulation, where we anticipate approximate stability

to eventually be achieved for these inertia tensor component’s numerical values. We expect that,

although these values might change rapidly during the initial stages of the simulation, values
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for Izz and Ixx may asymptotically approach stable values as the simulation evolves. Therefore,

our intention is to run simulations of stellar structure to such a time as asymptotic stability is

approximately achieved for the inertia tensor components of interest. Such a procedure allows us to

determine estimates for quantifying the wave strain of continuous gravitational waves resulting from

the stellar surfaces of magnetars as induced by the rotationally non-axisymmetric deformations due

to the strength of the star’s internal magnetic field.

Having established the theoretical motivations for constructing a magnetar stellar model, we

now turn to discussion of structural equations, including the determination of ρ(r), required for

producing physically stable and representative models.
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CHAPTER 3

STELLAR STRUCTURE MODEL

3.1 Newtonian Structural Equations

3.1.1 Hydrostatic Equilibrium

The construction of a stellar model at static equilibrium requires a crucial balancing of forces acting

upon the stellar interior. Specifically, the force of gravity must be equally opposed; otherwise, grav-

itational collapse quickly brings the stellar system out of equilibrium. The equation of hydrostatic

equilibrium
dP
dr
= −G

Mr ρ

r2 , (3.1)

where Mr is the mass interior to the radius r for r < Rstar, provides the basis for balancing the

gravitational force with structural variation throughout the stellar interior [5]. The change in the

pressure must counteract the inward force due to gravity. We see that as r increases, the sign of the

change in pressure is strictly negative; pressure must decrease with increasing radius.

3.1.2 Mass Conservation

The equation for hydrostatic equilibrium hints at the notion that we require an an additional equation

to describe the change of mass in the stellar interior, given Mr must change with radius. Such an

expression comes in the form of the mass conservation equation,

dMr
dr
= 4πr2ρ . (3.2)

When given an expression for density ρ(r), we may solve for the stellar mass M via separation of

variables and integration [5].
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3.2 The Equation of State

The time-independent equations of hydrostatic equilibrium and mass conservation provide

necessary structural equations for describing stable and physical stellar systems. However, for

the purpose of constructing stellar models, an additional equation, an equation of state (EOS),

relating pressure to a number of state variables describing stellar structure is required. Initially, this

statement may seem vague; however, a considerable degree of freedom exists in choosing an EOS,

and in comparing such equations, each may be a function of a varying number of stellar variables

such as density, temperature, neutron number density, etc. The extent of such parameterizations

depend of the stellar structure which is to be modeled.

3.2.1 Polytropes: General Solutions

Equations of state which parameterize pressure exclusively as a function of density are known as

polytropes. Their functional form can be expressed as

P(ρ) = Kργ , (3.3)

where γ is often represented by the polytropic index n via

γ =
n + 1

n
. (3.4)

Then, polytropes can be classified by the chosen value for n as

P(ρ)n = Kρ
n+1

n , (3.5)

where K is the polytropic constant [5].

3.2.2 The N = 1 Polytrope

Equations of state are often categorized by the compressibility of stellar matter, where a lower

adiabatic index (3.4) corresponds to lower compression and vice versa [3]. This implies that the
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structural composition of the stellar interior sets a constraint on representative equations of state.

Under this consideration, we implement an n = 1 polytropic EOS inmodeling neutron star structure.

Priorwork has established neutron star structure aswell approximated by the choice of polytropic

EOS corresponding to (0 < n . 1) [19][20][12]. As we shall discuss in §3.2.3, an expression for

density as a function of radius can be determined via solutions to the Lane-Emden equation (3.12).

There exist only three analytic solutions to this equation, specifically for n = 0, 1, and 5. Therefore,

the n = 1 polytrope has the added benefit of the following analytic solutions for ρ(r) and P(r) from

which stellar structure can be entirely determined:

ρ(r) = ρc
sin (πr/R)R

rπ
, for r < R (3.6a)

P(r) = Kρ(r)2 . (3.6b)

Although the analytic nature of this solution provides a convenience in computation and modeling,

more importantly, we adopt this model with further consideration for the volume of existing

literature. Specifically, as we show in Chapter 4, stellar magnetic field model configurations are

constrained by the choice of EOS [1]. Whereby analytic expressions for magnetic field models are

well determined for the n = 1 polytropic EOS, such models allow for ready implementation in our

computational model.

For equations (3.6a) and (3.6b), we must specify two constants: the central density ρc and the

polytropic constant K . Current estimates place ρc near ∼ 1015 g·cm−3, and we adopt the following

value based on previous work [3][12]

ρc = 2.0 × 1015 g·cm−3. (3.7)

The polytropic constant K can be determined indirectly by utilizing the following relation for stellar

radius derived from expressions (3.14) and (3.15) of the Lane-Emden equation

R = αnξ1 =

[
K(n + 1)

4πG

]1/2
ρ
(1−n)/2n
c ξ1 , (3.8)

where ξ1 is defined by Θn(ξ1) = 0, such that ξ1 is a dimensionless constant parameterizing the

radius of the star relative to the density scaling function Θn(ξ) [19]. These functions and their
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motivation are discussed in more detail in §3.2.3. For the n = 1 polytrope, the scaling function

takes the analytic form

Θ1(ξ) =
sin (ξ)
ξ

, (3.9)

such that

Θ1(ξ1) =
sin (ξ1)

ξ1
= 0 . (3.10)

Notice expression (3.10) corresponds to the first root for the zeroth-order Bessel function, such that

ξ1 = π. Returning to expression (3.8), we intend to specify a stellar radius R based on accepted

values for neutron star radii and rearrange our expression for K. Implementing a stellar radius of

10 km as informed by prior work, we rearrange (3.8) such that the polytropic constant becomes

K =
4πG
(n + 1)

[
R

ρ
(1−n)/2n
c ξ1

]2

. (3.11)

For n = 1, R = 10 km = 106 cm, and ξ1 = π, we find

K =
2G
π

[
1 × 106 cm

]2
≈ 4.246 × 104 cm5 · g−1 · s−2 . (3.12)

3.2.3 The Lane-Emden Equation

One may have noticed that in discussing the equations for hydrostatic equilibrium and mass con-

servation, the density as a function of radius, ρ(r), must be specified. In order to determine a radial

parameterization of density, we require a differential equation for dρ
dr . Such an expression may be

obtained by relating our structural differential equations in conjunction with our chosen polytropic

EOS. Notice that if we rearrange equation (3.1) and take a radial derivative, we obtain

d
dr

(
r2

ρ

dP
dr

)
= −G

dMr
dr

. (3.13)

The right-hand side of this expression includes the mass conservation relation (3.2), such that we

make appropriate substitutions whereby our differential equation becomes

1
r2

d
dr

(
r2

ρ

dP
dr

)
= −4πGρ . (3.14)
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The expression is fully in the form of radius, pressure, and density, and we now implement a chosen

polytropic EOS, making substitutions for pressure P and density ρ as necessary, and where we

make use of expression (3.4), such that we have(
n + 1

n

)
K
r2

d
dr

[
r2ρ(1−n)/n dρ

dr

]
= −4πGρ . (3.15)

We notice that our differential equation now relates density directly to radius. Subsequent trans-

formations serve to simplify the form of this equation; however, such substitutions preserve the

functional relation of equation (3.15). It is thereby customary to express density as

ρ(r) ≡ ρc[Θn(r)]n where 0 ≤ Θn ≤ 1 (3.16)

such that Θn(r) is a dimensionless and radially dependent equation which scales density in accor-

dance with the core density, ρc. Substituting expression (3.9) into expression (3.8), we introduce

the additional expressions

αn ≡

[
(n + 1)

(
Kρ(1−n)/n

c
4πG

)]1/2

, (3.17)

and the dimensionless variable

ξ ≡
r
αn

, (3.18)

such that we arrive at the Lane-Emden equation,

1
ξ2

d
dξ

[
ξ2 dΘn

dξ

]
= −(Θn)

n . (3.19)

This equation provides solutions for the dimensionless function Θn(ξ). Via an appropriate change

of parameters, one can subsequently obtain expressions for ρn(r), and by extension Pn(r) [5]. In

turn, these expressions entirely determine stellar structure.
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Figure 3.1: Solutions to the Lane-Emden equation for n = 0, 1, 2, 3, 5. Notice that the asymptotic solution
for n = 5 results in infinite radius, ξ1 = ∞. Only the solutions corresponding to n = 0, 1, and 5 are analytic;
all other solutions must be computed numerically.

3.3 The Gravitational Potential

Our discussion has covered methods for obtaining radial expressions for pressure and density,

and particular solutions for the n = 1 polytrope. Recall that hydrostatic equilibrium requires the

balance of an inward gravitational force with the radial change in pressure. It follows that in the

process of deriving the Lane-Emden equation, we can reformulate our expression to solve instead

for gravitational potential. Thus, expression (3.14) can be written as

1
r2

d
dr

(
r2 dΦg

dr

)
= 4πGρ . (3.20)

This expression is the spherically symmetric form of Poisson’s equation for gravitational potential

per unit mass, where Φg ≡ ϕg/m [5]. We determine solutions to Φg as constrained by our

determined expression for density, equation (3.6a), which satisfy the following boundary conditions:
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dΦg

dr
= 0

����
r=0

, (3.21a)

Φg

����
r=R inside

= Φg

����
r=R outside

, (3.21b)

dΦg

dr

����
r=R inside

=
dΦg

dr

����
r=R outside

. (3.21c)

Provided our analytic expression for density of a n = 1 polytrope (3.6a), we can use separation

of variables and substitution to solve equation (3.20) forΦg [12]. We find the following expressions

for the gravitational potential, converting Φg to ϕ(r) by multiplying through by m in each equation:

ϕcore = 4Gρc

(
−

R2

π
−

M
4Rρc

)
, for r = 0 (3.22a)

ϕinside(r) = 4Gρc

(
−R3 sin (πr/R)

π2r
−

M
4Rρc

)
, for 0 < r < R (3.22b)

ϕoutside(r) = −
GM

r
, for r > R (3.22c)

Given that the gravitational potential must be spherically symmetric, we plot the functional form

of our potential against radius to globally verify its continuity and adherence to specified boundary

conditions within the computational domain.

Figure 3.2: The piecewise continuous gravitational potential ϕ(r) across all domains interior and exterior
to the star. Visual inspection confirms the potential follows set boundary conditions.
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It is valuable to note that as the stellar model evolves and the magnetic field changes, the model’s

gravitational potential remains static; the potential adheres to its form determined here as assigned

via initial conditions of the simulation. This approximation, being widely adopted, is referred to

as the Cowling approximation, and provides considerable accuracy under direct comparison tests

between static and dynamic potentials for modeling stellar structure which, under evolution, is

slightly perturbed from initial conditions [21].
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CHAPTER 4

MAGNETIC FIELD MODEL

4.1 Hydromagnetic Equilibrium

In chapter 3, we began our discussion with the equation of hydrostatic equilibrium, balancing

the radial change in pressure against the inward-seeking force of gravity, ultimately allowing us

to construct expressions for stellar density and pressure. In constructing a spherically symmetric

model for the magnetic field in the stellar interior, we follow an analogous procedure by beginning

with the equation for hydromagnetic equilibrium,

∇P
ρ
+ ∇ϕ =

(∇ × B) × B

4πρ
=

L

4πρ
, (4.1)

where we have familiar expressions for P the stellar pressure, ρ the mass density, and ϕ the

gravitational potential, as well as new variables such as B the magnetic field and L the Lorentz

force [1]. The expression (∇ × B) × B = L defining the Lorentz force becomes clear given

necessary conditions for hydromagnetic equilibrium; primarily, we require static fields such that

the Maxwell-Ampere law reduces to Ampere’s law. Then,

(∇ × B) = µ0J , (4.2)

such that

(∇ × B) × B = µ0J × B = ρqv × B , (4.3)

where ρq is free charge density and v is charge velocity. Furthermore, the requirement of static

fields qualitatively means equation (4.1) arises from a stellar interior where the condition of no

internal motion or rotation is assumed [22].

The gravitational potential, conforming to Poisson’s equation, is the restated expression (3.20),

∇2ϕ = 4πGρ , (4.4)
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such that the functional form for ϕ as determined in §3.3 remains consistent in solving for magnetic

field configurations. Furthermore, the magnetic field must adhere to Maxwell’s equations, such

that the field preserves the divergence-free condition,

∇ · B = 0 . (4.5)

4.2 Magnetic Field Solutions for Barotropic Equations of State

Notice that the left-hand side of (4.1) is entirely composed of gradients of scalar functions.

Using the identity, ∇ × (∇A) = 0, for A any scalar-valued function, we arrive at an additional

constraint for the magnetic field,

∇ ×

[
B × (∇ × B)

ρ

]
= 0 . (4.6)

This expression requires that for a barotropic equation of state of the form, ρ = ρ(P), the magnetic

field configuration is constrained by the density. For our model, we determine such an expression

via the inverse of equation (3.6b), leading to

ρ(P) =

√
P
K

. (4.7)

Following a procedure detailed by [1] and [22], structural expressions are determined first for

the stellar interior without the presence of a magnetic field. Our discussion in Chapter 3 provides us

with necessary structural expressions for the n = 1 polytrope. Subsequently, equation (4.6) is used

to determine an expression for the magnetic field, B. In a final step, [1] and [22] use the resulting

magnetic field equation to solve for first perturbative order expressions of ρ, P, and ϕ. In doing

so, the authors determine the degree to which the magnetic field, B, changes the stellar structure,

from which a measure of stellar ellipticity, ε , can be determined. By alternative means discussed

in §2.7, we calculate ellipticity through computational simulation of magnetic-field induced stellar

deformation.
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4.3 Field Structure

In §1.2.1, we discussed the pulsar model which describes the physical structure and external

magnetic field necessary to produce strong and focused radio beams aligned along the magnetic

axis of the pulsar. These radio beams are the result of charged particles that are excited near the

magnetic axis, producing dipole radiation. The production of focused radio beams requires a strong

dipolar magnetic field. In particular, equation (1.13) quantifies the strength of the magnetic dipole

field near the surface of the star. This condition sets a restriction on potential field configurations

which replicate magnetar composition, as the pulsar model requires that these stars must possess

strong dipolar fields. Dipole fields are broadly referred to as poloidal fields, as their configurations

involve field lines directed from pole to pole of the magnetic axis. We now turn to the issue of

allowable field configurations for which the field remains in dynamic stability, and unallowable

configurations which rapidly evolve and alter the stellar field structure.

4.3.1 Unstable Field Configurations

The hydromagnetic equilibrium conditions outlined in §4.1 only permit a finite number of solutions

for allowablemagnetic field configurations in the stellar interior. Certain fields are strictly prohibited

by these conditions, leading to unstable field configurations with dramatic time evolution. Flowers

and Ruderman (1977) discuss the inherent instability of pure-poloidal stellar magnetic fields with

uniform, unclosed field lines in the stellar interior matching an external dipolar field [23]. Figure

4.1 displays such a field configuration with parallel field lines running longitudinally through the

star.

To illustrate why such a field is unstable, an analogy can be made between stellar poloidal field

configurations and an pair of vertical bar magnets with respective poles aligned side-by-side. As

shown in Figure 4.2, when the bar magnets are brought close together, the proximity of like poles

causes the bars to rotate until the north pole of one magnet aligns parallel to the south pole of the

other. This process reduces the magnetic field energy external to the bar magnets while preserving
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Figure 4.1: An unstable purely poloidal magnetic field configuration with unclosed field lines in the stellar
interior. The field is uniform throughout the interior and matches to a dipolar field on the exterior.

Figure 4.2: A bar magnet model illustrating the instability of purely-poloidal magnetic field configurations.
The bar magnets rotate to decrease the energy of the external field configuration while preserving the
magnetic field energy interior to the bar magnets [24].

their internal field energy. An similar process of field reconfiguration must also occur in purely

poloidal fields, reducing the magnetic energy of the field exterior to the star while preserving the

energy configuration in the stellar interior.

4.3.2 Stable Field Configurations

Although a purely poloidal magnetic field is an unstable configuration on its own, the field may

be stabilized in a number of ways. In newly formed neutron stars, the crustal region undergoes

dramatic cooling, resulting in the crystallizing of crustal material [23]. If the time scale over which

the magnetic field undergoes reconfiguration, the Alfvén crossing time,

tA =

√
4πρR
B

, (4.8)
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is greater than the time scale of crustal formation and crystallization, the field does not have sufficient

time to evolve before the crust develops. This results in the magnetic field lines becoming “frozen

in” near the crust, thus stabilizing the field. [24] show that for a typical magnetar configuration

with magnetic field strength in the interior exceeding 1015 gauss, tA ≈ 0.1 s, whereas crustal

crystallization requires ∼ 100 s. As a consequence, this process alone can not account for the

complete stabilization of a purely poloidal stellar magnetic field.

[23] show that a dipolar field can be stabilized by a toroidal component field which wraps

horizontally around the poloidal field. The toroidal field is purely azimuthal, and in the context

of spherical coordinates (r, θ, φ), can be referred to exclusively by the field component Bφ for

B = {Br, Bθ, Bφ}, a vector-valued expression for the stellar magnetic field. Again, authors Flowers

and Ruderman provide a useful analogy via the bar magnet model. Figure 4.3 displays a field

configuration in which a toroidal field wraps horizontally around both bar magnets, restraining the

poloidal field. The currents responsible for producing the toroidal field flow along poloidal field

Figure 4.3: A purely poloidal field running north to south in the parallel bar magnets can be stabilized by a
purely-azimuthal toroidal field wrapping horizontally around the magnets [23].

lines and surround currents which produce the poloidal field. The stability of this configuration

depends on the co-dependence of one field component to the other; if, say, the poloidal field begins to

alter its configuration and field strength, the toroidal component strengthens, thereby counteracting

field instabilities. We refer to field configurations involving both poloidal and toroidal components

as mixed magnetic fields.

The interdependence between poloidal and toroidal components in mixed field configurations is
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further developed in mathematical formalism by [22] and [1]. [22] introduces the field line function

S(r, θ), which takes the form of a constant along poloidal field lines. Similarly, an equation β(S) is

constant along toroidal field lines. Recalling equations (4.1) and (4.3), the toroidal field Bφ can not

exert a force, as there exists no structural or magnetic component to oppose the force. Therefore,

[B × (∇ × B)]φ = 0 . (4.9)

We define field components Br and Bθ as

Br =
1

r2 sin θ
∂S
∂θ

, (4.10)

and

Bθ = −
1

r sin θ
∂S
∂r

, (4.11)

such that equation (4.9) becomes

Bp · ∇(r sin θBt) = 0 , (4.12)

where the poloidal field is expressed as Bp = {Br, Bθ} and the toroidal field as Bt = Bφ. Then, via

equation (4.12), we find that

Bφ =
β(S)

r sin θ
, (4.13)

such that β is a function of S, and importantly, we find that the toroidal field, Bφ, is a function of

the poloidal component in mixed magnetic field configurations.

4.4 Mixed Field Solutions for the N = 1 Polytrope

4.4.1 Eigenvalue Solutions

In determining mixed field solutions for the n = 1 polytrope via the density constraint equation

(4.6), solutions arise for which the eigenvalue λ is related to the functions β and S by

β =
πλ

R
S , (4.14)
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where S is of the form S(r, θ) = A(r) sin2 θ and A(r) is a function which completely determines the

radial dependence of the field line function, S(r, θ) [1][22]. Haskell et al. (2008) determine values

for λ as arising from roots to the transcendental equation

πλ(λ2 − 1) cos πλ − (3λ2 − 1) sin πλ = 0 . (4.15)

In Table (4.1) below, we list the first few eigenvalue solutions λn to equation (4.15), as well as a

number of solutions for n � 1. We find that in the case of n � 1, eigenvalue solutions approach

the form λn = n + 3/2.

λn Numerical Value

λ1 2.3619
λ2 3.4079
λ3 4.4301
. . . . . .

λ99 100.497
λ100 101.497
. . . . . .

λ500 501.499

Table 4.1: Eigenvalues determining allowed relative strengths for the toroidal component of the mixed
magnetic field equations. The first few eigenvalues are shown, followed by results for n � 1 to illustrate the
approximate relationship λn = n + 3/2 for sufficiently large n.

4.4.2 Field Expressions

Haskell et al. (2008) find that for the n = 1 polytrope and for eigenvalues λ, solutions to the mixed

magnetic field configuration take the form

B =

{
2A cos θ

r2 ,
−A′ sin θ

r
,
πλA sin θ

rR

}
, (4.16)

and where A is

A =
Bk R2

(λ2 − 1)2y

[
2π

λy cos (λy) − sin (λy)
πλ cos (πλ) − sin (πλ)

+
(
(1 − λ2)y2 − 2

)
sin (y) + 2y cos (y)

]
. (4.17)
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The constant Bk sets the strength of the magnetic field. The field strength at the stellar surface,

which we label Bs, imposes a constraint on the value of Bk , as we wish for the value of Bs to adhere

to magnetar surface field strengths of order 1015 G.We experimentally determine for our simulation

that a value of Bk = 1× 1017 G results in a surface field strength of approximately Bs ≈ 2.5× 1015

G. This designation is consistent with the notion that internal magnetic field strengths can range up

to a few orders of magnitude higher than surface fields [3].

For our field expressions, the parameter y has been implemented to simply equation (4.17)

where

y =
πr
R

. (4.18)

In Figure (4.4), we generate scalar plots of |B| for various values of λ in the xz-plane. Notice

that as the value of λ increases, the relative strength of the toroidal field increases, meaning the

eigenvalue λ parameterizes the strength of the toroidal component with respect to the poloidal field.

Haskell et al. (2008) use first perturbative order to solve for perturbations in the stellar structure,

and find that for λn where n for a mixed field configuration, the star becomes increasingly prolate

[1].
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(a) λ = 2.36 (b) λ = 4.43

(c) λ = 9.467 (d) λ = 100.5

Figure 4.4: Contour plots of internal magnetic field magnitude against normalized radius (r = 1.0 = R)
for mixed-field configurations. As the parameter λ increases, the toroidal component of the mixed field
increases in relative magnitude to the poloidal component.
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CHAPTER 5

NUMERICAL METHODS

5.1 The Magnetohydrodynamic Equations

In Chapters 3 and 4 we develop expressions for the structural composition and magnetic field

configuration which satisfy requirements of hydrostatic and hydromagnetic equilibrium, respec-

tively. These conditions jointly determine stability of fluid comprising the stellar structure in the

presence of a magnetic field. However, as we note in §4.2, subsequent introduction of a magnetic

field model following the determination of stellar structure equations introduces minute perturba-

tions to structural variables such as pressure and density. Whereas Haskell et al. (2008) determine

these perturbations via first-order perturbation theory, we implement computational methods in

evolving the initial model configuration to determine the perturbed equilibrium configuration [1].

Subsequent analysis of the evolved simulation informs estimate of continuous gravitational wave

strain, h, as a result of stellar deformation quantified by the ellipticity, ε .

Although the expressions for hydrostatic and hydromagnetic equilibrium allow determination

of structural and magnetic field equations which are stable, these solutions possess no explicit

time dependence. Therefore, we require a set of equations governing the time-dependent evolution

of both the stellar structure and magnetic field. The magnetohydrodynamic (MHD) equations

provide the necessary set of conditions to evolve our stellar model, imposing both time-independent

constraints and the conservation of time-dependent quantities.

In Chapter 3, we construct a stellar structure model, implementing an n = 1 polytropic EOS

under various considerations, the foremost being the equation’s utility in accurately modeling

neutron star structure while providing a straightforward, analytic expression. Although this choice

of EOS does come with trade-offs as we discuss in Chapter 7, we apply a similar philosophy of

balancing utility with ease of implementation in our choice of ideal MHD equations. A set of

assumptions are adopted for ideal MHD physics which simplify its form, including omission of
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effects due to resistivity and thermal diffusion, both physical phenomenon which are mitigated

by attributes of the neutron star stellar interior including superconductivity and nearly isothermal

composition. Under these considerations, the ideal MHD equations provide a useful basis for

evolving our stellar model while offering accessible utilization in numerical methods. Below, we

list the principle equations of ideal magnetohydrodynamics:

∂ρ

∂t
+ ∇ · (ρv) = 0 , (5.1a)

ρ

(
∂

∂t
+ v · ∇

)
v + ∇p −

1
µ0
(∇ × B × B) = 0 , (5.1b)

∂p
∂t
+ v · ∇p + γp∇ · v = 0 , (5.1c)

∂B

∂t
+ ∇ × (cE) = 0 , ∇ · B = 0 . (5.1d)

Equation (5.1a) is the mass continuity equation, expressing conservation of mass given there

exist no flow source or sink terms in our computational domain. Equation (5.1b) is the Cauchy

momentum equation regarding momentum transport. Equation (5.1c) expresses conservation of

entropy, modeling an adiabatic fluid. The final component, Equation (5.1d), is Faraday’s law, were

crucially, the divergence constraint is specified for the magnetic field [25]. These non-linear partial

differential equations must be solved via finite-difference numerical methods, forming the next

topic of discussion.

5.2 Numerical Solver: The PLUTO Code

5.2.1 The Computational Domain

In order to initialize and evolve our simulation under our chosen set of stellar structure andmagnetic

field equations, we implement PLUTO, a freely-distributed C-based code intended for simulation

of astrophysical phenomena involving fluid dynamics. PLUTO is readily applicable to numerous

physical circumstances, including simulation of fluid configurations which evolve in accordance

with the ideal MHD equations. PLUTO allows the user to specify a computational domain in which

simulation variables such as density, pressure, and the magnetic field components are specified over
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a finite mesh grid. We implement a spherically symmetric computational domain in accordance

with the spherical symmetry present in our equations for stellar structure and the magnetic field.

Below, Figure 5.1 displays a single hemisphere of the computational domain. One can clearly note

a difference in relative grid resolution throughout the domain. Specifically, we set a higher radial

grid cell resolution of 50 cells from r = 0 to r = 1.0 = R, where the dimensions of our domain

are specified in units of normalized radius r/R. We discuss further the choice of separate radial

grid resolution interior and exterior to the star in §6.2.1. We utilize lower radial mesh resolution

exterior to the star, with 2 grid cells radially spanning r = 1.0 and r = 1.1. For 0 < θ < π, referred

to as the polar angle from the north to south pole, 30 grid cells are specified. The azimuthal angle,

for 0 < φ < 2π, is set to a resolution of 60 grid cells, or 30 cells per hemisphere.

Figure 5.1: A three-slice cutaway of the computational domain. Notice the regional variation in grid
resolution.

5.2.2 Finite Difference Methods

The discretization of the computational domain into hundreds of finite-volumegrid cells necessitates

numerical methods for solving the ideal MHD equations based on finite-difference schemes. To

provide motivation for the use of discrete methods, we discuss numerical methods for discretely
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approximating an ordinary derivative. Recall the definition of an ordinary derivative is

df
dx
= lim

h→0

f (x + h) − f (x)
h

, (5.2)

such that the discretization h infinitesimally approaches zero, allowing analytic interpretation

of df/dx. While this definition allows exact evaluation of analytic expressions for derivatives,

computational methods require the use of non-zero discretization, as infinitesimal limits have no

numerical equivalent. Thus, numerical approximation of derivatives, as well as anti-derivatives,

require finite-difference methods for evaluation. Extending our example of approximating an

ordinary derivative for a continuous and differentiable function, f (x), by numerical methods, the

central-difference scheme approximates df/dx as

df
dx
=

f (x + h) − f (x − h)
2h

+ O(h2) . (5.3)

We note that for sufficiently small discretization of h, say, h ∼ 10−8, we may indeed numerically

approximate df/dx to near machine accuracy, εmachine ∼ 10−16. Although the central-difference

scheme is simply one example of numerical methods employed for approximating derivatives, the

approximation of analytic expressions including the definition of the derivative (equation (5.2))

by the central difference scheme (equation (5.3)) highlights a principle of approximating analytic

expressions such as derivatives and anti-derivatives which rely on infinitesimal discretization. That

is, finite difference methods are required for the computational implementation of derivatives and

anti-derivatives, and wemust choose numerical schemes whichminimize the error between analytic

evaluation and finite-difference approximation for a function [26].

Under these considerations, PLUTO provides the user with various numerical algorithms which

solve the idealMHDequations via finite differencemethods, thus evolving an initial configuration in

accordance with the conditions specified by equations (5.1a) through (5.1d). Specifically, a chosen

solver iteratively determines the change in grid-cell variables such as the density, pressure, and

magnetic field based on surrounding grid-cell quantities for respective variables. Qualitatively, this

means the chosen solver must determine the evolution of these grid-cell variables by interpolation,

evaluating the flux, or change in a variable quantity for a specified grid-cell, by utilizing the
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Figure 5.2: Schematic for initial data characterizing a one-dimensional Riemann problem [27]. In our
model, to the left of x = 0 represents the value (uL) for a cell variable, say density, and x > 0 represents an
adjacent grid cell with a different variable value UR. The role of the solver is the determine how the adjacent
grid-cell values change over a time dt, based on the flux of surrounding grid-cell quantities for the specified
variable .

variable’s flux in surrounding grid-cells. This process is not unlike the central-difference scheme,

which determines df/dx by implementing the surrounding values f (x + h) and f (x − h). Numerical

solvers which use finite-difference methods to solve systems which evolve via continuity equations

of the form ∂t f + v∂x f = 0 are known as Riemann solvers. These solvers determine solutions to a

Riemann problem, which consists of determining how constant piecewise data across a boundary

evolves in time. For our simulation, there exists a Riemann problem for each grid-cell boundary, as

the discretization of the computational domain requires finite-differences between adjacent grid cell

quantities for a particular variable. As with the numerical approximation of ordinary derivatives,

many computational schemes exist for solving Riemann problems, and PLUTO provides the user

with a variety of Riemann solvers from which to choose. In selecting a Riemann solver, one must

weigh considerations for numerical accuracy and computational efficiency, a common theme in our

methodology. We implement the Hartman, Lax, Van Leer or hllc Riemann solver, which provides

a balance of accuracy and efficiency.

43



5.3 Data Visualization: VisIt

Once PLUTO has generated solutions to the idealMHD equations for our model by implementing

the hllc Riemann solver, data are written to files after the simulation has evolved for a discrete

simulation time step of 1×10−3 s. We require the use a visualization tool for graphically displaying

these computational data. We utilize VisIt, a freely-distributed, open-source visualization utility

devloped byLawrence LivermoreNational Laboratory, which allows data analysis via 3-D rendering

of scalar and vector fields. We implement VisIt for generating detailed visualizations of both

structural and magnetic field evolution.
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CHAPTER 6

RESULTS

6.1 Computational Requirements

6.1.1 Dimensionless Units

Throughout this thesis, we utilize c.g.s. units for physical quantities, as this unit basis is a widely

adopted convention in the field of computational astrophysics. However, given the scale of quantities

we wish to employ, e.g. stellar mass ∼ 1033 g, magnetic field magnitude ∼ 1015 G, and stellar

radius ∼ 106 cm, we must anticipate potential hazards in direct computation of numerical solutions

as a result of extremely large or small input quantities. In particular, such implementation may

result in an ill-conditioned system, where small changes in input can result in dramatic changes in

the solution [26].

Fortunately, we can avoid ill-conditioned solutions by posing the set of initial conditions in an

alternative unit basis. Therefore, we adopt non-dimensional units, for which PLUTO allows ready

implementation via a set of unit bases. PLUTO allows the user to specify unit bases for density,

length, and velocity. Once a quantity is calculated in c.g.s. units, it is subsequently divided by the

appropriate combination of unit bases which render the value dimensionless. Consider the example

of pressure p, which has c.g.s. units of g·cm−1·s−2. The appropriate combination of unit bases

which provide the proper dimensionless transformation is

p =
pcgs

ρ0v
2
0
, (6.1)

where p is the dimensionless expression for pressure, and pcgs is the value of the pressure in c.g.s.

units. The unit bases p0 and v0 for density and velocity, respectively, are freely specified by the

user to fit the simulation requirements.

Table 6.1 lists unit bases and corresponding magnitudes we utilize for our computational

simulation. The magnitude of each unit basis is chosen with consideration to minimizing the
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magnitude of important simulation quantities, such as the magnetic field, for which a magnitude of

∼ 1015 G can be reduced to ∼ 101 in dimensionless units.

Unit Basis c.g.s. Value

ρ0 1 × 108 g·cm−3

l0 1 × 1010 cm
v0 1 × 1010 cm· s−1

Table 6.1: Unit bases utilized in this thesis. Values were chosen with the intent of minimizing the magnitude
of dimensionless expressions for pressure, gravitational potential, magnetic field strength, etc.

In general, the computational procedure from initial conditions to final solution utilizes dimen-

sionless conversions in the following way:

a) Calculate numerical value in c.g.s.

b) Convert to dimensionless quantity via appropriate combination of unit bases.

c) Evolve simulation via hllc numerical solver. Determine solution for quantity.

d) Convert value back to c.g.s.

e) Write data to file.

6.2 Validation of Model Stability

In this section, we verify that both our chosen structural model and magnetic field configuration

are dynamically stable by evolving each in time to evaluatewhether large-scale structural instabilities

form.

6.2.1 Hydrostatic Equilibrium

In order to test that our stellar model is in hydrostatic equilibrium, balancing gravity with the change

in pressure, we generate a stellar simulation where |B| = 0, effectively turning off the magnetic

field. Our analysis focuses principally on the density and its evolution under such simulation.

Because the pressure is related to the density by equation (3.6b), we immediately have an indication
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Figure 6.1: Semi-log plot for the stellar density profile at simulation time t = 0 s. Density in g·cm−3 is
plotted against normalized stellar radius.

of the pressure profile evolution given the degree of change in the density. Thus, indication

of little change in the density profile under the conditions of hydrostatic equilibrium indicates

correspondingly slight change in pressure throughout the star, and in turn, verification of structural

stability.

Figure 6.1 displays a semi-log plot of the initial configuration of the stellar density profile,

obtained by plotting density values along the x-axis of the computational domain where the star is

centered at the origin. The choice of the x-axis is arbitrary, as the star possesses spherical symmetry.

Each point along the pressure profile indicates a grid cell within the computational domain. It is

valuable to note the large-scale difference between adjacent density values immediately interior

to the star and at the stellar surface. The difference is approximately seven orders of magnitude,

which poses potential issues in numerical simulation across this boundary. Recall that evolution

of the computational model requires solving many Riemann boundary problems between finite

differences in adjacent grid cell volumes. Due to the dramatic scale of the finite-difference problem

for density near the stellar boundary, we expect computational artifacts in the form of diffusion,
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or excessive density flux, as a result of the inherent limitation of the discretized simulation at

large-scale boundary problems. The impact of such diffusion can be mitigated by increasing radial

resolution, thus lowering the finite difference between adjacent grid cells. Indeed, this forms the

motivation for our choice of higher radial grid cell resolution interior to the star. Even higher radial

grid cell resolution would function to further mitigate diffusion near the stellar boundary; however,

considerationmust bemade for balancing computational accuracy and efficiency, andwith increased

grid cell resolution comes the cost of compute time. We further discuss the impact of resolution

on compute time in Chapter 7. Due to these considerations and computational limitations, we

adopt a middle ground between exceedingly time-intensive, high-resolution simulations and lower

resolution studies, with the acknowledgement that some computational artifacts in the form of

diffusion may inherently develop through evolving our stellar model.

Figure 6.2 displays results from hydrostatic equilibrium tests with the magnetic field removed

from the simulation in order to exclusively measure structural stability. To evaluate the change

in density over the course of the simulation, we analyze the time derivative of density, dρ/dt, at

various timesteps of the computational simulation. The left column is comprised of pseduocolor

plots at three chosen simulation timesteps allowing visualization for the value of dρ/dt across

the xz-plane of the computational domain. The blue horizontal line running through the x-axis

of each pseudocolor plot corresponds to a line of data sampled to create the second column of

accompanying line plots. These plots are evenly symmetric, and again, the choice of line plots

along the x-axis is arbitrary given the stellar spherical symmetry.

At t = 0 corresponding to the initial conditions for the simulation, we trivially observe no

change in density. However, as our prior discussion of computational diffusion anticipates, in the

first iteration of simulation evolution at t ≈ 0.001 s, we observe abrupt changes in density along grid

cells adjacent to the stellar boundary. Line plot (D) clearly displays this phenomenon, as density

is rapidly evacuated from a spherical shell of grid-cell centered density values from r = 0.97 to

r = 0.99, where the radial depth of each grid cell is 0.02 units of normalized radius such that these

grid cells represent the outer-most layers of the stellar interior. We notice a similar phenomenon
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(a) x–z plot: dρ/dt at t = 0 s (b) x-axis line plot: dρ/dt at t = 0 s

(c) x–z plot: dρ/dt at t ≈ 0.001s (d) x-axis line plot: dρ/dt at t ≈ 0.001s

(e) x–z plot: dρ/dt at t = 5.0 s (f) x-axis line plot: dρ/dt at t = 5.0 s

Figure 6.2: Graphical depictions for dρ/dt at computation times t = 0, t ≈ 0.001, and t = 5.0 s. The left
column (plots (A), (C), and (E)) displays pseduocolor plots for the value of dρ/dt in the xz-plane. The blue
horizontal line running through each pseudocolor plot corresponds to the line plot data of plots (B), (D), and
(F) in the right column.
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along the interior radial boundary, r = 0. Given that the volume of each grid cell is proportional

to r2, the mesh density in this region is much higher than outer radial regions. This may result

in an overrefinement of the numerical solution near the core, producing additional non-physical

diffusion. This suggests there is likely a balance between excessively high and low mesh reso-

lutions to minimize erroneous diffusivity in these regions. Future investigations may choose to

further evaluate methods of minimizing these computational artifacts by adjusting mesh resolution

accordingly.

Plots (E) and (F) display dρ/dt after the simulation has evolved to t = 5.0 s in computational

time, corresponding to the 5000 iteration of the solution. Notice that initial perturbations present

in the t ≈ 0.001 s solution are significantly diminished after 5000 computational iterations. We

notice spherically symmetric perturbations propagating through the stellar interior; however, these

artifacts are damped by the stellar medium, and are rapidly attenuated over the course of successive

simulation iterations. Therefore, although non-physical artifacts manifest in the first iteration of the

simulation (plots (D) and (E)), their effect is significantly diminished under relatively short time

scales in computational evolution.

To ensure these computational artifacts have little impact on the large-scale structure of the

stellar interior, Figure 6.3 graphs the semi-log density plot at t = 0 s from Figure 6.1 beside a

(a) Density profile, t = 0 s (b) Density profile, t = 5.0 s

Figure 6.3: Semi-log plots for the stellar density profile along the x-axis at t = 0 (left) and t = 5.0 (right).
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Figure 6.4: Relative residual plot comparing the initial configuration of the stellar density profile to the
profile after simulation time t = 5.0 s.

comparable graph for t = 5.0 s. Qualitative comparison between these graphs clearly indicates that

the overall density profile predominantly retains its initial structural configuration.

To provide quantitative analysis between these density profiles, we display the relative residuals

between Figure 6.3 plots (A) and (B) in Figure 6.4. We define relative residuals in the following

way:

R(i)ρ(i)∗, ρ(i) ≡
ρ(i)∗ − ρ(i)

ρ(i)∗
, (6.2)

where ρ(i)∗ is the value of the density at t = 0 for i a discretized radial point along the line plots of

Figure 6.3, and ρ(i) is the corresponding density value at t = 5.0 s. These relative residuals help

us to quantify the difference between the initial structural configuration and after elapsed time of

the simulation.

An ideal fit between density profiles at t = 0 s and t = 5.0 s corresponding to a system at

hydrostatic equillibrium would result in a relative residual plot with all residuals equal to zero.

With the narrowly localized exception of the residual point corresponding to the radial grid-cell

at r = 0.99, we find strong consistency with the ideal hydrostatic equilibrium model where all

residuals are zero. Indeed, we compute the mean of relative residuals to be 6.98 × 10−3, providing

quantitative support that the condition of hydrostatic equilibrium is met by our model.
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6.2.2 Hydromagnetic Equillibrium

Recall our discussion of stable field configurations in §4.3.2. We based the stability of a given

magnetic field configuration on its ability to evolve under Alfvén time scales, which refer to the time

necessary for Alfvén waves to propagate throughout the magnetic field. These waves are induced

by tension in the field lines, and determine the geometric evolution of the field configuration [25].

Therefore, we base analysis of the magnetic field configuration on the Alfvén time scale of our

magnetic field configuration.

For a homogeneous plasma with uniform density ρ0 and magnetic field strength 0, the velocity

of an Alfvén wave is

vA =
B0
√
µ0ρ0

. (6.3)

As density and magnetic field stength vary in our model, we determine a volume averaged value

for the Alfvén velocity, v̄A, where v̄A ≈ 2.736×109 cm·s−1. Equation (4.8) for the Alfvén crossing

time can thus be alternatively expressed as

tA =
d
vA

(6.4)

where d is the wavelength of the Alfvén wave, which in the stellar interior is ∼ R = 106 cm [28].

We compute the volume-averaged Alfvén crossing time for our model to be t̄A ≈ 0.4 ms, which is

in good agreement with prior evaluation of the Alfvén crossing time for interior magnetic fields in

highly magnetic neutron stars [28].

In assessing the stability of our model’s magnetic field configuration, the computed Alfvén

crossing time indicates that robust analysis of the field’s stability may be conducted by analyzing

the field configuration after dozens or hundreds of Alfvén crossings, as there are ∼ 2700 Alfvén

crossings in one second of the simulation. We base analysis of the magnetic field configuration

stability by comparing the initial field configuration to the evolved state after 100 Alfvén crossings,

corresponding to a simulation time t ≈ 0.037 s. Despite the relatively short simulation duration,

this time scale is appropriate for analysis of field stability given the computed Alfvén crossing

time. As an aside, we remark on potential concerns one may raise regarding the simulation time
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(a) t̄A = 0 (b) t̄A = 100

Figure 6.5: Plot (A) displays a streamline plot for initial configuration of the poloidal component field,
corresponding to tA = 0. Plot (B) shows the field after 100 Alfvén crossings, confirming that the geometry
of the field is preserved. Field lines sweep up through the central z-axis of the star and out through the crustal
region, appearing to twist along each path as the toroidal field constrains the pure-poloidal instability. Note
that the field is confined to the interior of the star.

step size (1 ms) as potentially too coarse for resolving changes due to Alfvén wave propagation.

While data files are generated after the simulation has advanced by 1 ms in simulation time, the

time discretization, dt, implemented by the hllc numerical solver is of order 10−5 s. Thus, the

numerical “time resolution” between Alfvén crossings is of order 101, such that analysis of the

model’s field configuration under Alfvén time scales is justified.

Following a similar approach to our analysis of hydrostatic equilibrium, we offer both qualitative

and quantitative evidence for supporting the claim that our magnetic field model is structurally and

dynamically stable. First, we provide analysis of the magnetic field by presenting qualitative com-

parisons for both poloidal and toroidal component fields in juxtaposing their respective evolution

under 100 Alfvén crossing times. We plot streamlines of each component magnetic field, which are

produced by integrating along trajectories of the vector-valued magnetic field. Thus, streamlines

provide a method of analyzing the geometry of the field configuration after a specified number of

Alfvén crossings. Figure 6.5 displays streamlines of the poloidal component field at both tA = 0

and tA = 100. We notice that the geometry of the field is well preserved, providing initial support
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(a) t̄A = 0 (b) t̄A = 100

Figure 6.6: Streamline plots highlighting the initial configuration of the toroidal field in green (Plot A)
and after 100 Alfvén crossings (Plot B). Opacity of the outer poloidal field lines has been reduced to aid
visualization of the inner toroidal component.

for stability of the poloidal component field configuration. Figure 6.6 displays a similar comparison

for the toroidal component field. Both figures provide a preliminary conclusion that the large-scale

structure of the magnetic field model is maintained through 100 Alfvén crossings, and that the

mixed-field model is indeed dynamically stable.

While magnetic field streamline visualizations are derived from the vector-valued field, we also

plot the field itself to discern how well the geometry of the vector field is preserved under 100

Alfvén crossings. Figure 6.7 displays visualizations of both the poloidal component vector field

(plots (A) and (B)) and the toroidal component field (plots (C) and (D)) for t̄A = 0 and t̄A = 100.

These plots highlight howwell the configuration of themagnetic field is preserved under 100Alfvén

crossings, and further support the claim that the mixed field configuration we utilize in this thesis

adheres to the condition of structural stability.

Additionally, we expect that for a stable magnetic field configuration, the field strength of both

the poloidal and toroidal fields should remain nearly constant through Alfvén time scales. This

stability condition does not preclude slight variations in component field strength, and indeed, as

we note in §4.3.2, the condition of dynamic stability for mixed magnetic field requires that slight
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(a) t̄A = 0 (b) t̄A = 100

(c) t̄A = 0 (d) t̄A = 100

Figure 6.7: Vector plots for the poloidal and toroidal component field displaying initial configuration and
field after 100 Alfvén crossings. The poloidal field is displayed in plots (A) and (B), and the toroidal field is
featured in plots (C) and (D).

variation in one component field must counterbalance the change in the other field. However,

as the initial conditions for our simulation specify a non-perturbed field solution at hydrostatic

equilibrium, we expect to find minimal change in the field configuration over Alfvén time scales.

Otherwise, dramatic variations in component field strength would contradict the conclusion of

stability for the magnetic field configuration.

In Figure 6.8, we plot the volume-averaged component field magnitude for the poloidal and

toroidal fields through 100 Alfvén crossings. Notice that the magnitude of each component field

is nearly constant across 100 Alfvén crossings. We analyze these field-magnitude variations more
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Figure 6.8: Volume-averaged magnitude of the
poloidal and toroidal component fields through 100
Alfvén crossings. The fields remain near initial
magnitude through Alfvén timescales.

Figure 6.9: Percent difference evaluation for the
poloidal and toroidal fields relative to initial con-
figuration volume-averaged magnitude.

closely in Figure 6.9, where we plot the percent difference of each field from its initial t̄A = 0

magnitude up to t̄A = 100. Although the poloidal and toroidal fields vary slightly from their

initial field strength, the low magnitude of their variation provides further supporting evidence for

declaring our magnetic field configuration stable.

6.3 Numerical Estimates of Gravitational Wave Strain

6.3.1 Moment of Inertia Tensor Components Iz z & Ixx

In §2.7, we discuss the ellipticity, ε , and its relation to the gravitational wave strain, h0 (equation

(2.44)) produced by an asymmetrically rotating source such as a magnetar. In order to compute the

ellipticity, we must first determine the inertia tensor components Izz and Ixx and their evolution

throughout the simulation.

Fortunately, our data visualization platform VisIt provides the user with various “queries”

which can be used to analyze data, including computing themoment of inertia tensor. We determine

Izz and Ixx by evaluating the moment of inertia tensor in simulation time steps of 100ms. Recall the

the inertia tensor is formed from equation (2.46), which is a volume integral over the stellar interior.

Thus, we anticipate numerical limitations on the accuracy of computed values for Izz and Ixx , as
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(a) Ixx : Integration along the x-axis (b) Izz: Integration along the z-axis

Figure 6.10: Configurations of the spherical mesh for integration of inertia tensor components. Evaluation
of the Ixx component by integration along the x-axis is different than computation of Izz along the z-axis

each tensor component must be computed over the discretized computational mesh of finite volume

cells. Furthermore, because the spherical mesh is not uniform in both the polar angle θ and radially

in r , calculation of Izz by integrating along the z-axis results in a systematically different value than

calculations of Ixx along the x-axis. Figure 6.10 illustrates the non-uniformity of the mesh along

the x and z-axes, clearly indicating that the finite-volume mesh resolution systematically impacts

numerical accuracy in computing the Ixx and Izz inertia tensor components.

For the initial configuration of the stellar model at t = 0 s, the inertia tensor can be evaluated

analytically as

I j k =

∫
V
ρ(r, t = 0)

(
r2δ j k − x j xk

)
dV , (6.5)

where ρ(r, t = 0) takes the form of equation (3.6a), such that

I0 = Ixx = Iyy = Izz =
8(π2 − 6)R5ρc

3π3 . (6.6)

From this analytic expression, wemaydetermine the error in computing Izz and Ixx via the difference

between each numerically computed tensor component at simulation time t = 0 against the analytic

expression (6.6). Figures 6.11 and 6.12 graph absolute error for Ixx and Izz, respectively. In

each plot, the radial resolution of the spherical mesh is kept constant while the angular resolution,

measured by the number of discretizations along the polar axis, n = π/dθ, varies from 10 to 70.
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Figure 6.11: Allometric regression of Ixx absolute
error vs angular resolution

Figure 6.12: Allometric regression of Izz absolute
error vs angular resolution

We notice that the absolute error is proportional to 1/n2, with improvements to angular resolution

affording less and less reduction in error for higher values of n. In §7.1, we discuss in more

detail the impact of angular resolution on computation time, as this sets a constraint on our mesh

resolution and thus the numerical precision of Ixx and Izz.

Crucial to the evaluation of the ellipticity ε is the difference Izz − Ixx , which we refer to as

∆I. Because the finite-difference integration scheme for these inertia tensor components over

the spherical mesh provide slightly different values for Izz(t = 0) and Ixx(t = 0), the value

|Izz(t = 0) − Ixx(t = 0)| , 0 is of considerable importance. This value, which we label δIzx ,

represents a systematic error in our evaluation of Ixx and Izz. Therefore, numerical evaluations for

these tensor components take the following form

Ixx = Ixx ± δIzx(t = 0)

Iz z = Izz ± δIzx(t = 0) .
(6.7)

In Figure 6.13, we display the evolution over simulation time of Ixx and Iz z on the same

graph for the instance of hydrostatic equilibrium where |B| = 0. Both inertia components are

assigned an error margin as expressed in equation (6.7), represented by the lighter shaded regions

surrounding each curve. Because the error margins for both Ixx and Iz z overlap for the duration

of the simulation, we strictly can not distinguish a non-zero value for the ellipticity, ε . For the

instance of hydrostatic equilibrium, the null hypothesis is that Ixx and Izz do not change from their
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Figure 6.13: Izz and Ixx evolution for conditions of hydrostatic equilibrium. The error margin δIzx is
represented by the shaded regions of each curve. The precise overlap of each error margin suggests that
fluctuations in the inertia tensor are perfectly symmetric under hydrostatic equilibrium, and that the ellipticity
remains zero throughout the duration of the simulation.

initial configuration, such that Ixx = Izz and ε = 0. Thus, we trivially verify the null hypothesis

for the instance of hydrostatic equilibrium. As an aside, we note that for Figures 6.13 and 6.14,

the moment of inertia is given in g·cm−3 because the choice of normalized radius, R = 1.0, leaves

expressions for the moment of inertia such as the analytic result of equation (6.6) with dimensions

of density.

6.3.2 Ellipticity Measurements

For the non-trivial instance in which Ixx and Iz z evolve such that their error margins do not overlap,

we can determine experimental measurements for ellipticity. We calculate error bounds for the

ellipticity, where

∆Imax = (Iz z + δIzx) − (Ixx − δIzx)

∆Imin = (Iz z − δIzx) − Ixx + δIzx) ,
(6.8)

such that an experimentally determined ellipticity, ε , can be expressed as

ε =
∆I

I0
±

2δIzx
I0

. (6.9)

59



Figure 6.14: Ixx and Izz evolution in the presence
of a strong magnetic field. Notice that the inertia
tensor components become distinctly separated, al-
lowing measurement of ellipticity.

Figure 6.15: Ellipticity as measured for each in-
stance of the evolution of Ixx and Izz as depicted in
Figure 6.14 in the presence of a magnetic field.

In Figure 6.14, we graph the evolution of Ixx and Iz z through a simulation time of t = 5.0 s where

the magnetic field is assigned the magnitude Bk = 1 × 1017 G as discussed in §4.4.2. We notice

a marked difference from the instance of hydrostatic equilibrium in Figure 6.13, as Ixx and Iz z

become distinguishable such that measurements of ellipticity can be performed.

Recall that in §2.7, we suggested that the evolution of Ixx and Iz z may, given sufficient

simulation time, approach stable values after initial variation due to reconfiguration of the stellar

mass profile by the magnetic field. Our results in Figure 6.14 lead us to the conclusion that over

the course of our simulation, Ixx and Iz z have yet to reach long term solutions. In Figure 6.15,

we plot ellipticity computed for the above results of Figure 6.14. We notice that the value of the

ellipticity becomes increasing negative, suggesting that the star becomes steadily more prolate with

time. By simulation time t = 5s, we find the ellipticity to be ε = (7.907 ± 0.408) × 10−2. Because

Ixx and Iz z do not stabilize over the duration of the simulation, we set a provisional statement on

our measurements of ε , such that the stable solution for the ellipticity, ε∗, lies below ε (t = 5.0).
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Figure 6.16: Comparison of ellipticity as calculated in Figure 6.15 (red) for angular resolution nθ,φ = 30
and results for nθ,φ = 50 (blue).

6.3.3 Effect of Angular Resolution on Ellipticity

We test the effect of increasing angular resolution of our simulation to determine whether greater

mesh discretization modifies our calculation of ellipticity. We refer to angular resolution as the

mesh discretization number density, nθ,φ, in a hemisphere of both the polar and azimuthal grid.

We increase angular resolution from nθ,φ = 30 to nθ,φ = 50 and find that for t / 3 s, our results

agree for both higher and regular resolution ellipticity measurements within error margins set by

the ellipticity error margin expressed in equation (6.9). We plot our results in Figure 6.16.

For t ' 3 s, we find that ellipticity measurement for higher angular resolution data trends

marginally less negative than the regular resolution counterpart. These results suggests that in-

creased angular resolution may result in ellipticity values which possess equilibrium configurations

with absolute values below that of lower angular resolution results for ellipticity. We find that for

nθ,φ = 50, the ellipticity is ε (t = 5.0) ≈ 7.1 × 10−2, which we utilize in §6.3.4 and §6.3.5 for

gravitational wave strain calculations.
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6.3.4 Upper-limit Estimate for h0

In calculating upper limits for the gravitational wave strain, h0, recall equation (2.44),

h0 =
4π2G

c4

I0 f 2
gw

d
ε , (6.10)

where fgw = 2/P is the gravitational wave frequency for P the period of rotation for the star and

d is the distance from the observer to the gravitational wave source. We utilize average magnetar

rotational period and stellar distance for stellar sources in the McGill Magnetar Catalog, where

Pavg = 6.65 s and davg = 11.43 kpc, indicating that these are slowly rotating, galactic sources [2].

Utilizing fiducial values for neutron star parameters including unperturbed moment of inertia, I0,

we follow the work of Lasky in expressing wave strain as

h0 = 4.2 × 10−26
(

ε

10−6

) (
P

10 ms

)−2 (
d

1 kpc

)−1
, (6.11)

where we formulate equation (6.10) such that we may easily determine wave strain via rotational

periods in ms and distances in kpc [29]. Utilizing our determined value of |ε | ≈ 7.1 × 10−2 and

average values for rotational period and distance via the McGill Magnetar Catalog, we find that

h̄0 ≈ 4.2 × 10−26
(

7.1 × 10−2

10−6

) (
6650 ms
10 ms

)−2 (
11.43 kpc

1 kpc

)−1
≈ 5.9 × 10−28 . (6.12)

6.3.5 Strain Estimates for the McGill Magnetar Catalog

Recall via §4.4.2 that our ellipticity calculation is determined for a magnetar with surface field

strength BS ≈ 2.5×1015. Whereas average surface dipolar magnetic field strength Bavg for sources

in the McGill Magnetar Catalog is ∼ 3.65× 1014 G and the maximum detected field strength Bmax

is 2.0 × 1015 G, our simulated surface field strength represents an upper limit on the existing set

of known magnetar field strengths. Therefore, our determined value for ellipticity additionally

represents an upper limit for known magnetar sources.

We compute upper limits of gravitational wave strain estimates for magnetars in the McGill

Magnetar Catalog by utilizing equation (6.11) where we set ellipticity to our determined value,
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Figure 6.17: Wave strain estimates for sources in the
McGill Magnetar Catalog computed via determined
ellipticity simulations. The blue dashed line repre-
sents the average of computed wave strain values.

Figure 6.18: Wave strain predictions as calculated by
Lasky [29]. The blue and red data represent estimates
for ATNF pulsar catalog sources assuming purely
poloidal and purely toroidal fields, respectively.

7.1× 10−2, and vary rotational period, P, and distance, d, in accordance with each source. We plot

our results in Figure 6.17.

Lasky plots strain estimates for pulsars in theATNFcatalog, assuming stellar field configurations

for purely poloidal fields in blue and near purely toroidal fields in green [29]. We find that our strain

estimates for McGill Magnetar Catalog sources, assuming a mixed poloidal and toroidal magnetic

field configuration, lie above (higher strain sensitivity) and to the left (lower wave frequency) of

sources in Figure 6.18. Our results agree with intuition, as the comparatively stronger magnetic

fields of magnetars will cause greater deformation and thus higher gravitational wave strain value.

Unfortunately, because the slow rotational period of magnetars, we can not superimpose our data

of Figure 6.17 onto Figure 6.18 given the mismatch in frequency domain.

We note that in Figure 6.18, Lasky plots various gravitational wave observatory detector strain

sensitivity curves. The grey curve displays LIGO sensitivity for the initial S5 run, the black solid

curve is the projected sensitivity of advanced LIGO (aLIGO) following various instrumentation

upgrades, and the black dotted curve displays the sensitivity of the planned Einstein Telescope

(ET). The operational frequencies of LIGO and aLIGO are limited on the low end to 10 Hz, and

the frequency cutoff of ET is roughly 1 Hz. These limitations mean that present gravitational
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wave observatories are not sensitive to continuous gravitational waves produced by slowly rotating

magnetars; however, our results suggest that their wave strain may be in range of future detectors

specializing in lower-frequency gravitational wave signals.
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CHAPTER 7

CONCLUSION

7.1 Analysis of Results

In constructing a computational model for the stellar structure and magnetic field configuration

of a magnetar, we have shown that our chosen stellar model, an n = 1 polytrope, remains at

hydrostatic equilibrium via hydrodynamic simulations. Furthermore, we confirm that the mixed

field configuration, combining both poloidal and toroidal component fields, is stable under Alfvén

timescales. Thus, we confirm that the configuration of our model is structurally and dynamically

stable.

We subsequently compute the stellar deformation due to the magnetic field as quantified by

the ellipticity. Via measurements of stellar ellipticity, we compute upper-limit estimates for the

gravitational wave strain for sources in theMcGill Magnetar Catalog, a manifest of knownmagnetar

sources. In comparing our results against prior gravitational wave strain predictions as computed by

[29] for ATNF pulsar sources, we find that our results are in accordance with prediction; magnetars,

possessing the strongest magnetic field strengths, will be deformed more than conventional pulsars

by their respective fields, thus resulting in higher wave strain estimates.

Further work is required for analysis of ellipticity measurements, which inform our estimates

for gravitational wave strain. We identify two primary sources of error which we seek to inves-

tigate. First, recall that determination of Izz and Ixx are limited by the angular resolution of the

computational mesh. In turn, we must introduce the error margin δIzx , which limits the numerical

precision for measurements of the ellipticity.

Figure 7.1 displays a log-log plot of the error term for the ellipticity against the angular

resolution, which we label nθ,φ to indicate that the angular resolution is consistent in both the polar

angle θ and the azimuthal angle φ. As we increase the angular resolution, the error term for ε

decreases, although this comes at the cost of increased compute time for simulations. Figure 7.2
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Figure 7.1: Log-log plot for the ellipticity error
term against angular resolution.

Figure 7.2: Quadratic regression of time to solu-
tion (t = 1 s) against angular resolution. Higher
resolutions become increasing prohibitive in time
duration.

displays a quadratic relationship between the angular resolution and time required to evolve the

simulation by 1 second in computational time. We see that as the angular resolution increases,

the compute time becomes increasingly prohibitive, which has presently limited our analysis to

relatively short-term simulation duration up to t = 5 s. Simulations presented in this thesis

have thus-far utilized only single-core computation, and extension to multi-core computing may

significantly improve compute time and extend the range of feasible computational mesh resolutions

for mitigating the ellipticity error margin.

We list a second source of error we wish to continue investigating. We find that the introduction

of strong magnetic field strengths into our stellar model results in non-physical density evolution

after t ≈ 3 s. Figure 7.3 displays this phenomenon, which is characterized by abrupt changes in

density distribution, and appears to be most pronounced along the polar axis and in the equatorial

plane of the star. Because the density profile directly determines measurement of Izz and Ixx ,

which inform the ellipticity and wave strain, correction of this seemingly spurious phenomenon is

of key importance.

66



Figure 7.3: Pseudocolor plot of non-physical density phenomenon at simulation time t = 3.395 s. The
localization along the polar axis suggests the issue may be related to polar boundary conditions.

7.2 Future Work

The work of this thesis allows numerous avenues for future study, as the field of research

underpinning principle components of our findings provide a depth of opportunity in expanding

this study to include more elaborate physical phenomena. In particular, we note important aspects

of neutron star structure and computational methodswhichwe note offer a greater degree of physical

accuracy in modeling, however have been omitted from these results due to complexity and time

constraints.

Here, we utilize the Newtonian formulation of hydrostatic equilibrium and mass conservation,

which give way to the Lane-Emden equation for deriving structural expressions as a function of

radius. The general relativistic correction to these equations comes in the form of the Tolman-

Oppenheimer-Volkoff (TOV) equations. They may be solved in a similar manner to the Newtonian

analog provided an equation of state (EOS). Although approximated fairly by a n = 1 polytrope,

neutron star structure is varied and depends on a number of variables, not just density. A well

celebrated EOS in neutron star physics is the SLy EOS, which is referred to as a “unified EOS”

as transitions between structural regions including the outer and inner crust are computed via

many-body calculation and thus preserve thermodynamic relations across boundaries [9].

We note that while the density, and thus mass, distribution of our stellar model evolve with time,
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the gravitational is kept constant via the “Cowling Approximation”. One may wish to implement a

time-dependent gravitational potential in the form of a relativistic analog.

One may wish to include the contribution of non-ideal magnetohydrodynamic effects, such as

the Hall effect and thermal diffusion [30].The influence of superconductivity has been shown to

dramatically increase the scale of stellar deformations due to magnetic fields [1]. Thus, inclusion of

its influence could improve estimates for continuous gravitational wave strain resulting from highly

magnetic stellar sources.

Finally, we strongly recommend that determination of Izz and Ixx should be investigated further

to determine numerical integration schemes in 3-dimensional spherical coordinates which allow a

high degree of accuracy via interpolation, while also supporting computational efficiency.
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